86 lines
2.1 KiB
Python
86 lines
2.1 KiB
Python
#!/usr/bin/env python3
|
|
|
|
from .geometry import Vector
|
|
|
|
import pygame
|
|
import OpenGL.GL as gl
|
|
import math
|
|
|
|
class Controls:
|
|
def __init__(self):
|
|
pass
|
|
|
|
def apply(self):
|
|
pass
|
|
|
|
def update(self, time = 10):
|
|
pass
|
|
|
|
class TrackBallControls(Controls):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.vertex = Vector()
|
|
self.theta = 0
|
|
|
|
def apply(self):
|
|
gl.glRotatef(self.theta * 180 / math.pi, self.vertex.x, self.vertex.y, self.vertex.z)
|
|
|
|
def update(self, time = 10):
|
|
|
|
if not pygame.mouse.get_pressed()[0]:
|
|
return
|
|
|
|
coeff = 0.001
|
|
move = pygame.mouse.get_rel()
|
|
|
|
dV = Vector(move[1] * time * coeff, move[0] * time * coeff, 0)
|
|
dTheta = dV.norm2()
|
|
|
|
if abs(dTheta) < 0.00001:
|
|
return
|
|
|
|
dV.normalize()
|
|
|
|
cosT2 = math.cos(self.theta / 2)
|
|
sinT2 = math.sin(self.theta / 2)
|
|
cosDT2 = math.cos(dTheta / 2)
|
|
sinDT2 = math.sin(dTheta / 2)
|
|
|
|
A = cosT2 * sinDT2 * dV + cosDT2 * sinT2 * self.vertex + sinDT2 * sinT2 * Vector.cross_product(dV, self.vertex)
|
|
|
|
self.theta = 2 * math.acos(cosT2 * cosDT2 - sinT2 * sinDT2 * Vector.dot(dV, self.vertex))
|
|
|
|
self.vertex = A
|
|
self.vertex.normalize()
|
|
|
|
class OrbitControls(Controls):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.phi = 0
|
|
self.theta = 0
|
|
self.scale = 1
|
|
|
|
def apply(self):
|
|
gl.glScalef(self.scale, self.scale, self.scale)
|
|
gl.glRotatef(self.theta * 180 / math.pi, 1.0, 0.0, 0.0)
|
|
gl.glRotatef(self.phi * 180 / math.pi, 0.0, 1.0, 0.0)
|
|
|
|
def apply_event(self, event):
|
|
if event.type == pygame.MOUSEBUTTONDOWN:
|
|
# Wheel up
|
|
if event.button == 4:
|
|
self.scale += 0.2
|
|
elif event.button == 5:
|
|
self.scale -= 2
|
|
|
|
def update(self, time = 10):
|
|
|
|
if not pygame.mouse.get_pressed()[0]:
|
|
return
|
|
|
|
move = pygame.mouse.get_rel()
|
|
self.theta += move[1] * 0.01
|
|
self.phi += move[0] * 0.01
|
|
|
|
self.theta = max(min(self.theta, math.pi / 2), -math.pi / 2)
|