Merging from free rusty maker

This commit is contained in:
Thomas Forgione 2022-07-29 19:03:29 +02:00
parent bc728f8908
commit e384751b18
11 changed files with 1279 additions and 4 deletions

22
src/engine/bbox.rs Normal file
View File

@ -0,0 +1,22 @@
//! This module helps us to deal with bounding boxes.
use crate::engine::vector::Vector;
/// This struct represents a bounding box.
pub struct Bbox {
/// The position of the top right corner of the box.
pub position: Vector,
/// The size of the box.
pub size: Vector,
}
impl Bbox {
/// Creates a bounding box from x, y, width and height.
pub fn new(x: f64, y: f64, w: f64, h: f64) -> Bbox {
Bbox {
position: Vector::new(x, y),
size: Vector::new(w, h),
}
}
}

231
src/engine/character.rs Normal file
View File

@ -0,0 +1,231 @@
//! This module helps us dealing with characters.
use std::time::{Duration, Instant};
use crate::engine::bbox::Bbox;
use crate::engine::physics;
use crate::engine::scene::Updatable;
use crate::engine::vector::Vector;
use crate::engine::controls::Controls;
use crate::engine::math::{clamp, duration_as_f64, duration_as_frame};
// use crate::engine::physics;
// use crate::engine::renderer::Drawable;
// use crate::engine::scene::Updatable;
// use crate::engine::texture::Texture;
/// The different sides a character can face.
pub enum Side {
/// The character looks to the left.
Left,
/// The character looks to the right.
Right,
}
impl Side {
/// Returns the side corresponding to the force.
///
/// Returns None if the force is null.
pub fn from_force(force: Vector) -> Option<Side> {
if force.x > 0.0 {
Some(Side::Right)
} else if force.x < 0.0 {
Some(Side::Left)
} else {
None
}
}
/// Returns the offset in the texture.
pub fn offset(&self) -> i32 {
match *self {
Side::Left => 32,
Side::Right => 0,
}
}
}
/// A character, enemy or controllable.
pub struct Character {
/// The position of the character.
pub position: Vector,
/// The speed of the character.
pub speed: Vector,
/// If the player is controlling a character.
controls: Option<Controls>,
/// The side of the character.
side: Side,
/// The counter of jumps.
///
/// When it's 0, the character can no longer jump.
jump_counter: usize,
/// The maximum number of jumps a character can do.
///
/// It's reset when the character hits the ground.
max_jump: usize,
/// The timer of the character's animation.
animation_timer: Instant,
/// Whether the character is walking or not.
walking: bool,
/// Indicates that the player has released the jump button.
can_jump: bool,
}
impl Character {
/// Creates a character in (0, 0).
fn generic(controls: Option<Controls>) -> Character {
Character {
position: Vector::new(0.0, 0.0),
speed: Vector::new(0.0, 0.0),
controls,
side: Side::Right,
jump_counter: 1,
max_jump: 1,
animation_timer: Instant::now(),
can_jump: true,
walking: false,
}
}
/// Creates a character in (0, 0).
pub fn new() -> Character {
Character::generic(None)
}
/// Creates a character with the specified controls.
pub fn with_controls(controls: Controls) -> Character {
Character::generic(Some(controls))
}
/// Makes the character jump.
pub fn jump(&mut self) {
if self.can_jump && self.jump_counter > 0 {
self.jump_counter -= 1;
self.speed.y = physics::JUMP_SPEED.y;
}
}
/// Resets the jump counter.
pub fn ground_collision(&mut self) {
self.jump_counter = self.max_jump;
}
/// Make the player fall.
pub fn fall_off(&mut self) {
if self.jump_counter == self.max_jump {
self.jump_counter -= 1;
}
}
/// Makes the player die.
pub fn die(&self) {
panic!();
}
/// Returns a reference to the controls.
pub fn controls(&self) -> &Option<Controls> {
&self.controls
}
/// Returns a view that looks at the character.
pub fn view(&self) -> Bbox {
Bbox::new(self.position.x, self.position.y, 24.0 * 16.0, 24.0 * 9.0)
}
/// Returns the collision bounding box of the character.
pub fn bbox(&self) -> Bbox {
Bbox::new(self.position.x + 8.0, self.position.y, 16.0, 32.0)
}
}
impl Updatable for Character {
fn update(&mut self, duration: &Duration) {
let mut force = Vector::new(0.0, 0.0);
if let Some(ref controls) = self.controls {
force += controls.direction();
}
if let Some(side) = Side::from_force(force) {
if !self.walking {
self.animation_timer = Instant::now();
}
self.walking = true;
self.side = side;
} else {
if self.walking {
self.animation_timer = Instant::now();
}
self.walking = false;
}
let duration = duration_as_f64(duration);
// Compute acceleration
let accel = physics::G + force * 64.0 * 64.0;
// Compute speed
self.speed.x *= physics::GROUND_FRICTION.x;
self.speed += accel * duration;
if self.speed.y > physics::MAXIMUM_VERTICAL_SPEED {
self.speed.y = physics::MAXIMUM_VERTICAL_SPEED;
}
let limit = match self.controls {
Some(controls) if controls.is_running() => physics::MAXIMUM_RUNNING_SPEED,
_ => physics::MAXIMUM_WALKING_SPEED,
};
self.speed.x = clamp(self.speed.x, -limit, limit);
// Compute position
self.position += self.speed * duration;
}
// fn manage_event(&mut self, event: &Event) {
// let action = if let Some(ref controls) = self.controls {
// controls.convert(event)
// } else {
// None
// };
// match action {
// Some(Action::Jump(true)) => {
// self.jump();
// self.can_jump = false;
// }
// Some(Action::Jump(false)) => {
// self.can_jump = true;
// }
// _ => (),
// }
// }
}
// impl Drawable for Character {
// fn texture(&self) -> Texture {
// Texture::Rusty
// }
//
// fn texture_rect(&self) -> IntRect {
// let frame = duration_as_frame(&Instant::now().duration_since(self.animation_timer), 4);
// let offset = if self.walking { 64 } else { 0 };
// IntRect::new(self.side.offset() + offset, frame * 32, 32, 32)
// }
//
// fn position(&self) -> Vector<f32> {
// self.position
// }
// }

121
src/engine/controls.rs Normal file
View File

@ -0,0 +1,121 @@
//! This module helps to deal with controls.
use crate::engine::event::{Event, Key};
use crate::engine::vector::Vector;
/// The different actions that a user can do.
pub enum Action {
/// The jump button.
///
/// A bool at true means that the button was pressed,
/// A bool at false means that the button was released.
Jump(bool),
}
pub enum Controls {
/// A keyboard controller.
Keyboard(KeyboardMap),
}
impl Controls {
/// Returns the default keyboard controls.
pub fn default_keyboard() -> Controls {
Controls::Keyboard(KeyboardMap::default())
}
// /// Returns the default gamepad controls from id.
// ///
// /// Returns None if the gamepad corresponding to the id is not connected.
// pub fn default_gamepad_from_id(id: u32) -> Option<Controls> {
// match GamepadMap::from_id(id) {
// Some(map) => Some(Controls::Gamepad(map)),
// None => None,
// }
// }
// /// Returns the default gamepad controls from id.
// ///
// /// Returns None if the gamepad corresponding to the id is not connected.
// pub fn all_gamepads() -> Vec<Controls> {
// GamepadMap::all()
// .into_iter()
// .map(|x| Controls::Gamepad(x))
// .collect()
// }
/// Converts an event and depending on the config, returns the corresponding action.
pub fn convert(&self, event: &Event) -> Option<Action> {
match self {
Controls::Keyboard(ref map) => map.convert(event),
// Controls::Gamepad(ref map) => map.convert(event),
}
}
/// Returns the direction of the controls.
pub fn direction(&self) -> Vector {
match self {
Controls::Keyboard(ref map) => map.direction(),
// Controls::Gamepad(ref map) => map.direction(),
}
}
/// Returns whether the running key is pressed.
pub fn is_running(&self) -> bool {
false
// match self {
// Controls::Keyboard(ref map) => map.is_running(),
// Controls::Gamepad(ref map) => map.is_running(),
// }
}
}
/// A map between keyboard keys and actions.
#[derive(Copy, Clone)]
pub struct KeyboardMap {
/// The key corresponding to the jump button.
jump_key: Key,
/// The key corresponding to the run button.
run_key: Key,
/// The key corresponding to the left button.
left_key: Key,
/// The key corresponding to the right button.
right_key: Key,
}
impl KeyboardMap {
/// Creates the default keyboard config.
pub fn default() -> KeyboardMap {
KeyboardMap {
jump_key: Key::Space,
run_key: Key::ArrowUp,
left_key: Key::ArrowLeft,
right_key: Key::ArrowRight,
}
}
/// Converts an event and depending on the config, returns the corresponding action.
pub fn convert(&self, event: &Event) -> Option<Action> {
match event {
Event::KeyPressed(code) if *code == self.jump_key => Some(Action::Jump(true)),
Event::KeyReleased(code) if *code == self.jump_key => Some(Action::Jump(false)),
_ => None,
}
}
/// Returns the direction of the keys.
pub fn direction(&self) -> Vector {
let mut ret = Vector::new(0.0, 0.0);
const RIGHT: Vector = Vector { x: 1.0, y: 0.0 };
if self.right_key.is_pressed() {
ret += RIGHT;
}
if self.left_key.is_pressed() {
ret -= RIGHT;
}
ret
}
}

View File

@ -117,6 +117,9 @@ pub enum Key {
/// The bottom arrow key.
ArrowDown,
/// The space key.
Space,
}
impl Key {
@ -127,6 +130,7 @@ impl Key {
"ArrowRight" => Some(Key::ArrowRight),
"ArrowUp" => Some(Key::ArrowUp),
"ArrowDown" => Some(Key::ArrowDown),
"Space" => Some(Key::Space),
_ => None,
}
}

526
src/engine/map.rs Normal file
View File

@ -0,0 +1,526 @@
//! This module contains everything related to maps.
use std::fs::File;
use std::io::Read;
use std::path::Path;
use sfml::graphics::{FloatRect, IntRect};
use sfml::system::Vector2;
use crate::engine::character::Damage;
use crate::engine::math::{clamp, Matrix};
use crate::engine::renderer::Drawable;
use crate::engine::texture::{byte_to_index, Texture, SPRITE_SIZE_F32, SPRITE_SIZE_I32};
use crate::{Error, Result};
/// This enum represents if the collision happens on the X axis or the Y axis.
#[derive(Copy, Clone)]
pub enum CollisionAxis {
/// The X axis.
X,
/// The Y axis.
Y,
/// Both axis simultaneously
Both,
}
impl CollisionAxis {
/// Returns true if the collision occured on X axis.
pub fn is_x(self) -> bool {
match self {
CollisionAxis::Y => false,
_ => true,
}
}
/// Returns true if the collision occured on Y axis.
pub fn is_y(self) -> bool {
match self {
CollisionAxis::X => false,
_ => true,
}
}
}
/// This struct represents the different sides from which a collision can occur.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub struct CollisionTile {
/// If the character comes from the top, it will collide if this bool is true.
pub from_top: bool,
/// If the character comes from the left, it will collide if this bool is true.
pub from_left: bool,
/// If the character comes from the right, it will collide if this bool is true.
pub from_right: bool,
/// If the character comes from the bottom, it will collide if this bool is true.
pub from_bottom: bool,
}
impl CollisionTile {
/// Creates a collision tile that does not collide.
pub fn empty() -> CollisionTile {
CollisionTile {
from_top: false,
from_left: false,
from_right: false,
from_bottom: false,
}
}
/// Creates a collision tile that collides from every side.
pub fn full() -> CollisionTile {
CollisionTile {
from_top: true,
from_left: true,
from_right: true,
from_bottom: true,
}
}
/// Tests whether a collision tile is full or not.
pub fn is_full(self) -> bool {
self.from_top && self.from_left && self.from_right && self.from_bottom
}
/// Tests whether a collision tile is empty or not.
pub fn is_empty(self) -> bool {
!self.from_top && !self.from_left && !self.from_right && !self.from_bottom
}
}
/// This struct represents a renderable tile linking to its part in the tileset texture.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub struct GraphicTile(Option<i32>);
impl GraphicTile {
/// Creates the correct graphic tile depending on the neighbours.
///
/// A none will be considered solid.
pub fn from_neighbour_options(tiles: &[Option<CollisionTile>; 8]) -> GraphicTile {
GraphicTile::from_neighbours(&[
tiles[0].unwrap_or_else(CollisionTile::full),
tiles[1].unwrap_or_else(CollisionTile::full),
tiles[2].unwrap_or_else(CollisionTile::full),
tiles[3].unwrap_or_else(CollisionTile::full),
tiles[4].unwrap_or_else(CollisionTile::full),
tiles[5].unwrap_or_else(CollisionTile::full),
tiles[6].unwrap_or_else(CollisionTile::full),
tiles[7].unwrap_or_else(CollisionTile::full),
])
}
/// Creates the correct graphic tile depending on the neighbours.
pub fn from_neighbours(tiles: &[CollisionTile; 8]) -> GraphicTile {
let mut byte = 0;
if !tiles[7].is_full() || !tiles[0].is_full() || !tiles[1].is_full() {
byte += 1;
}
if !tiles[1].is_full() {
byte += 2;
}
if !tiles[1].is_full() || !tiles[2].is_full() || !tiles[3].is_full() {
byte += 4;
}
if !tiles[3].is_full() {
byte += 8;
}
if !tiles[3].is_full() || !tiles[4].is_full() || !tiles[5].is_full() {
byte += 16;
}
if !tiles[5].is_full() {
byte += 32;
}
if !tiles[5].is_full() || !tiles[6].is_full() || !tiles[7].is_full() {
byte += 64;
}
if !tiles[7].is_full() {
byte += 128;
}
GraphicTile(Some(byte_to_index(byte)))
}
/// Returns the offset to the corresponding graphic tile in the texture.
pub fn offset(self) -> (i32, i32) {
match self.0 {
None => (0, 0),
Some(v) => (32 * v, 0),
}
}
/// Returns true if the tile is visible.
pub fn is_visible(&self) -> bool {
self.0.is_some()
}
}
/// A tile and its position.
pub struct PositionedTile {
/// The graphic representation of the positioned tile.
pub graphic: GraphicTile,
/// The collision representation of the positioned tile.
pub collision: CollisionTile,
/// The position of the positioned tile.
pub position: (f32, f32),
}
impl Drawable for PositionedTile {
fn texture(&self) -> Texture {
Texture::Overworld
}
fn texture_rect(&self) -> IntRect {
let offset = self.graphic.offset();
IntRect::new(offset.0, offset.1, SPRITE_SIZE_I32, SPRITE_SIZE_I32)
}
fn position(&self) -> Vector2<f32> {
self.position.into()
}
}
/// The map represents the tiles contained in a level.
#[derive(Clone)]
pub struct Map {
/// The entrace point of the character in the map.
entrance: (usize, usize),
/// The collision tiles contained in the level.
collision_tiles: Matrix<CollisionTile>,
/// The graphic tiles contained in the level.
graphic_tiles: Matrix<GraphicTile>,
}
impl Map {
/// Creates a map full of nothing, with a ground at the bottom.
pub fn new(rows: usize, cols: usize) -> Map {
let mut tiles = Matrix::from_size(rows, cols, CollisionTile::empty());
let rows = tiles.rows();
for i in 0..tiles.cols() {
tiles[(rows - 1, i)] = CollisionTile::full();
}
Map::from_collision_tiles(tiles)
}
/// Loads a map from a file.
pub fn from_file<P: AsRef<Path>>(path: P) -> Result<Map> {
let mut file = File::open(path.as_ref()).map_err(Error::Load)?;
let mut s = String::new();
file.read_to_string(&mut s).map_err(Error::Load)?;
Map::from_str(&s)
}
/// Loads a map from a string.
pub fn from_str(text: &str) -> Result<Map> {
let split = text.split('\n').collect::<Vec<_>>();
// First two usize are the size of the map
let size = split[0]
.split_whitespace()
.map(|x| x.parse::<usize>().unwrap())
.collect::<Vec<_>>();
let mut tiles = Matrix::from_size(size[0], size[1], CollisionTile::empty());
for (row, line) in split.iter().skip(1).enumerate() {
for (col, tile) in line.split_whitespace().enumerate() {
let num = tile.parse::<u8>().unwrap();
match num {
0 => (),
1 => tiles[(row, col)] = CollisionTile::full(),
_ => panic!("Expecting 0 or 1 in level files"),
}
}
}
Ok(Map::from_collision_tiles(tiles))
}
// /// Encodes the map into a binary format.
// pub fn encode(&self) -> Result<Vec<u8>> {
// serialize(&self.save_map()).map_err(Error::Encoding)
// }
// /// Decodes a map from bytes.
// pub fn decode(content: &[u8]) -> Result<Map> {
// deserialize(content)
// .map(SaveMap::to_map)
// .map_err(Error::Decoding)
// }
// /// Saves the map to a file.
// pub fn save<P: AsRef<Path>>(&self, path: P) -> Result<()> {
// let file = File::create(path.as_ref()).map_err(Error::Save)?;
// let mut writer = BufWriter::new(file);
// serialize_into(&mut writer, &self.save_map()).map_err(Error::Encoding)?;
// Ok(())
// }
// /// Loads a map from a file.
// pub fn load<P: AsRef<Path>>(path: P) -> Result<Map> {
// let file = File::open(path.as_ref()).map_err(Error::Load)?;
// let mut reader = BufReader::new(file);
// Ok(deserialize_from(&mut reader)
// .map(SaveMap::to_map)
// .map_err(Error::Decoding)?)
// }
/// Creates a map from its entrance and collision tiles.
pub fn from_entrance_and_collision_tiles(e: (usize, usize), t: Matrix<CollisionTile>) -> Map {
let rows = t.rows();
let cols = t.cols();
let graphic_tiles = Matrix::from_size(rows, cols, GraphicTile(None));
let mut map = Map {
entrance: e,
collision_tiles: t,
graphic_tiles,
};
for i in 0..rows {
for j in 0..cols {
map.graphic_tiles[(i, j)] = map.graphic_tile(i, j);
}
}
map
}
/// Creates a map from its tiles.
pub fn from_collision_tiles(collision_tiles: Matrix<CollisionTile>) -> Map {
let entrance = Map::find_entrance(&collision_tiles);
Map::from_entrance_and_collision_tiles(entrance, collision_tiles)
}
/// Creates the neighbours of a tile.
pub fn neighbours(&self, i: usize, j: usize) -> [Option<CollisionTile>; 8] {
[
if i > 0 && j > 0 {
self.collision_tiles.get(i - 1, j - 1).cloned()
} else {
None
},
if i > 0 {
self.collision_tiles.get(i - 1, j).cloned()
} else {
None
},
if i > 0 {
self.collision_tiles.get(i - 1, j + 1).cloned()
} else {
None
},
self.collision_tiles.get(i, j + 1).cloned(),
self.collision_tiles.get(i + 1, j + 1).cloned(),
self.collision_tiles.get(i + 1, j).cloned(),
if j > 0 {
self.collision_tiles.get(i + 1, j - 1).cloned()
} else {
None
},
if j > 0 {
self.collision_tiles.get(i, j - 1).cloned()
} else {
None
},
]
}
/// Returns the graphic tile corresponding to the collision tiles.
pub fn graphic_tile(&self, i: usize, j: usize) -> GraphicTile {
if self.collision_tiles[(i, j)].is_full() {
GraphicTile::from_neighbour_options(&self.neighbours(i, j))
} else {
GraphicTile(None)
}
}
/// Returns a tile of the map.
pub fn collision_tile(&self, i: usize, j: usize) -> Option<CollisionTile> {
self.collision_tiles.get(i, j).cloned()
}
/// Changes a tile of the map.
pub fn set_tile(&mut self, i: usize, j: usize, tile: CollisionTile) {
// Change the collision tile
self.collision_tiles[(i, j)] = tile;
// Refresh the current graphic tile and their neighbours
use std::cmp::max;
for i in max(i, 1) - 1..=(i + 1) {
for j in max(j, 1) - 1..=(j + 1) {
let new_tile = self.graphic_tile(i, j);
if let Some(tile) = self.graphic_tiles.get_mut(i, j) {
*tile = new_tile;
}
}
}
}
/// Finds a possible entrance.
pub fn find_entrance(tiles: &Matrix<CollisionTile>) -> (usize, usize) {
(tiles.rows() - 5, 1)
}
/// Returns the entrance of the map.
pub fn entrance(&self) -> (usize, usize) {
self.entrance
}
/// Returns an iterator to the positioned tiles.
pub fn at(&self, row: usize, col: usize) -> PositionedTile {
PositionedTile {
collision: self.collision_tiles[(row, col)],
graphic: self.graphic_tiles[(row, col)],
position: (col as f32 * SPRITE_SIZE_F32, row as f32 * SPRITE_SIZE_F32),
}
}
/// Returns the number of rows of the map.
pub fn rows(&self) -> usize {
self.collision_tiles.rows()
}
/// Returns the number of columns of the map.
pub fn cols(&self) -> usize {
self.collision_tiles.cols()
}
/// Checks whether the bounding box collides with elements of the map.
///
/// Returns the new correct position.
pub fn collides_bbox(
&self,
old: FloatRect,
new: FloatRect,
) -> Option<(CollisionAxis, Vector2<f32>, Damage)> {
let mut damage = Damage::None;
let cols = self.collision_tiles.cols() - 1;
let rows = self.collision_tiles.rows() - 1;
let min_col = clamp(new.left / SPRITE_SIZE_F32, 0.0, cols as f32) as usize;
let min_row = clamp(new.top / SPRITE_SIZE_F32, 0.0, rows as f32) as usize;
let max_col = clamp((new.left + new.width) / SPRITE_SIZE_F32, 0.0, cols as f32) as usize;
let max_row = clamp((new.top + new.height) / SPRITE_SIZE_F32, 0.0, rows as f32) as usize;
let mut collision_x = false;
let mut collision_y = false;
let mut new = new;
for col in min_col..=max_col {
for row in min_row..=max_row {
let tile_left = col as f32 * SPRITE_SIZE_F32;
let tile_top = row as f32 * SPRITE_SIZE_F32;
let tile = FloatRect::new(tile_left, tile_top, SPRITE_SIZE_F32, SPRITE_SIZE_F32);
if !overlap(new, tile) {
continue;
}
// Collisions between feet and ground
if self.collision_tiles[(row, col)].from_top
&& old.top + old.height <= tile_top
&& new.top + new.height >= tile_top
{
collision_y = true;
new.top = tile_top - new.height;
}
if !overlap(new, tile) {
continue;
}
// Collisions between right and right wall
if self.collision_tiles[(row, col)].from_left
&& old.left + old.width <= tile_left
&& new.left + new.width >= tile_left
{
collision_x = true;
new.left = tile_left - new.width;
}
if !overlap(new, tile) {
continue;
}
// Collisions between left and left wall
if self.collision_tiles[(row, col)].from_right
&& old.left >= tile_left + SPRITE_SIZE_F32
&& new.left <= tile_left + SPRITE_SIZE_F32
{
collision_x = true;
new.left = tile_left + SPRITE_SIZE_F32;
}
if !overlap(new, tile) {
continue;
}
// Collisions between head and roof
if self.collision_tiles[(row, col)].from_bottom
&& old.top >= tile_top + SPRITE_SIZE_F32
&& new.top <= tile_top + SPRITE_SIZE_F32
{
collision_y = true;
new.top = tile_top + SPRITE_SIZE_F32;
}
}
}
// Collision between the player and left border of the level
if new.left < 0.0 {
new.left = 0.0;
collision_x = true;
}
// Collision between the player and right border of the level
if new.left > cols as f32 * SPRITE_SIZE_F32 {
new.left = cols as f32 * SPRITE_SIZE_F32;
collision_x = true;
}
// Collision between the player and the void
if new.top > self.collision_tiles.rows() as f32 * SPRITE_SIZE_F32 {
new.top = self.collision_tiles.rows() as f32 * SPRITE_SIZE_F32;
collision_y = true;
damage = Damage::Death;
}
let new_pos = Vector2::new(new.left, new.top);
match (collision_x, collision_y) {
(true, true) => Some((CollisionAxis::Both, new_pos, damage)),
(true, false) => Some((CollisionAxis::X, new_pos, damage)),
(false, true) => Some((CollisionAxis::Y, new_pos, damage)),
(false, false) => None,
}
}
}
/// Checks if two boxes overlap.
pub fn overlap(box1: FloatRect, box2: FloatRect) -> bool {
box2.left < box1.left + box1.width
&& box2.left + box2.width > box1.left
&& box2.top < box1.top + box1.height
&& box2.top + box2.height > box1.top
}

105
src/engine/math.rs Normal file
View File

@ -0,0 +1,105 @@
//! This module contains useful math tools.
use std::ops::{Index, IndexMut};
use std::time::Duration;
/// Clamp a number between two boundaries.
pub fn clamp(number: f64, min: f64, max: f64) -> f64 {
if number < min {
min
} else if number > max {
max
} else {
number
}
}
/// Converts a duration into an animation frame number.
pub fn duration_as_frame(duration: &Duration, total: usize) -> i32 {
let secs = duration_as_f64(duration);
(secs * 10.0) as i32 % total as i32
}
/// Converts a duration into its number of seconds.
pub fn duration_as_f64(duration: &Duration) -> f64 {
duration.as_secs() as f64 + duration.subsec_nanos() as f64 / 1_000_000_000.0
}
/// A generic matrix type, useful for levels.
#[derive(Clone)]
pub struct Matrix<T> {
/// The number of rows of the matrix.
rows: usize,
/// The number of cols of the matrix.
cols: usize,
/// The contained data in the matrix.
data: Vec<T>,
}
impl<T> Matrix<T>
where
T: Clone,
{
/// Creates a matrix from an element and duplicates it.
pub fn from_size(rows: usize, cols: usize, element: T) -> Matrix<T> {
Matrix {
rows,
cols,
data: vec![element; rows * cols],
}
}
}
impl<T> Matrix<T> {
/// Converts an a pair corresponding to the row and columns into an integer.
pub fn to_usize(&self, (row, col): (usize, usize)) -> usize {
self.rows * col + row
}
/// Returns the number of rows.
pub fn rows(&self) -> usize {
self.rows
}
/// Returns the number of columns.
pub fn cols(&self) -> usize {
self.cols
}
/// Returns the tile if any, none otherwise.
pub fn get(&self, row: usize, col: usize) -> Option<&T> {
if row < self.rows && col < self.cols {
Some(&self[(row, col)])
} else {
None
}
}
/// Returns a mutable reference to the tile if any.
pub fn get_mut(&mut self, row: usize, col: usize) -> Option<&mut T> {
if row < self.rows && col < self.cols {
Some(&mut self[(row, col)])
} else {
None
}
}
}
impl<T> Index<(usize, usize)> for Matrix<T> {
type Output = T;
fn index(&self, index: (usize, usize)) -> &T {
let index = self.to_usize(index);
&self.data[index]
}
}
impl<T> IndexMut<(usize, usize)> for Matrix<T> {
fn index_mut(&mut self, index: (usize, usize)) -> &mut T {
let index = self.to_usize(index);
&mut self.data[index]
}
}

View File

@ -1,7 +1,15 @@
//! This module contains the whole engine that manages everything.
pub mod bbox;
pub mod character;
pub mod controls;
pub mod controls;
pub mod event;
pub mod image;
pub mod math;
pub mod physics;
pub mod scene;
pub mod vector;
use std::cell::RefCell;
use std::rc::Rc;
@ -165,7 +173,7 @@ impl Engine {
self.context.clear_rect(0.0, 0.0, 1920.0, 1080.0);
inner
.textures
.test
.rusty
.render(inner.x, inner.y, &self.context)?;
Ok(())
@ -203,13 +211,13 @@ impl InnerEngine {
///
/// It holds all our resources.
pub struct TextureManager {
test: Image,
rusty: Image,
}
impl TextureManager {
/// Creates and start the loading of all our textures.
fn new() -> Result<TextureManager> {
let test = Image::new("static/image.png")?;
Ok(TextureManager { test })
let rusty = Image::new("static/textures/rusty.png")?;
Ok(TextureManager { rusty })
}
}

27
src/engine/physics.rs Normal file
View File

@ -0,0 +1,27 @@
//! This module helps us deal with physics.
use crate::engine::vector::Vector;
/// The gravity force.
pub const G: Vector = Vector {
x: 0.0,
y: 25.0 * 32.0,
};
/// The friction with the ground.
pub const GROUND_FRICTION: Vector = Vector { x: 0.5, y: 1.0 };
/// The speed of a jump.
pub const JUMP_SPEED: Vector = Vector {
x: 0.0,
y: -12.5 * 32.0,
};
/// The maximum vertical speed.
pub const MAXIMUM_VERTICAL_SPEED: f64 = 10.0 * 32.0;
/// The maximul walking speed.
pub const MAXIMUM_WALKING_SPEED: f64 = 2.5 * 32.0;
/// The maximum running speed.
pub const MAXIMUM_RUNNING_SPEED: f64 = 5.0 * 32.0;

150
src/engine/scene.rs Normal file
View File

@ -0,0 +1,150 @@
//! This module contains the scene struct which holds everything needed during a game.
use std::time::Duration;
use crate::engine::character::Character;
use crate::engine::map::Map;
use crate::engine::texture::SPRITE_SIZE_F32;
/// Contains everything needed to play.
pub struct Scene {
/// The characters contained in the scene.
characters: Vec<Character>,
/// The map of the scene.
map: Map,
}
/// The type used to represent whether a a scene is running or finished.
#[derive(Copy, Clone, PartialEq, Eq)]
pub enum State {
/// The scene is running.
Running,
/// The scene is finished.
Finished,
}
impl Scene {
/// Creates a scene from a map level.
pub fn from_map(map: Map) -> Scene {
Scene {
characters: vec![],
map,
}
}
/// Adds a character to the scene.
pub fn add(&mut self, character: Character) {
let mut character = character;
character.position.x = self.map.entrance().1 as f32 * SPRITE_SIZE_F32;
character.position.y = self.map.entrance().0 as f32 * SPRITE_SIZE_F32;
self.characters.push(character);
}
/// Returns the controlable.
fn controlable(&self) -> Option<&Character> {
for character in &self.characters {
if character.controls().is_some() {
return Some(&character);
}
}
None
}
// /// Returns the right view.
// pub fn view(&self) -> Option<View> {
// let view = self.controlable()?.view();
// let mut center = view.center();
// let size = view.size();
// // Clamp center so that the view doesn't show things outside the level.
// if center.x - size.x / 2.0 < 0.0 {
// center.x = size.x / 2.0;
// }
// if center.y - size.y / 2.0 < 0.0 {
// center.y = size.y / 2.0;
// }
// let right_limit = self.map.cols() as f32 * SPRITE_SIZE_F32;
// let bottom_limit = self.map.rows() as f32 * SPRITE_SIZE_F32;
// if center.x + size.x / 2.0 > right_limit {
// center.x = right_limit - size.x / 2.0;
// }
// if center.y + size.y / 2.0 > bottom_limit {
// center.y = bottom_limit - size.y / 2.0;
// }
// Some(View::new(center, size))
// }
/// Updates the whole scene.
pub fn update(&mut self, duration: &Duration) -> State {
let mut state = State::Finished;
for c in &mut self.characters {
// Don't need to update if the character is dead
// if c.is_alive() {
if true {
let old = c.bbox();
// Compute the offset between position and bbox
let offset = old.position - c.position;
c.update(duration);
if let Some((axis, position, damage)) = self.map.collides_bbox(old, c.bbox()) {
c.position = position - offset;
if axis.is_x() {
c.speed.x = 0.0;
}
if axis.is_y() {
c.speed.y = 0.0;
c.ground_collision();
}
c.die();
} else {
c.fall_off();
}
// If a character is alive and still have controls, the game should continue
if c.controls().is_some() {
state = State::Running;
}
}
}
state
}
// /// Transfers an event to the elements contained in the scene that should receive events.
// pub fn manage_event(&mut self, event: &Event) {
// for c in &mut self.characters {
// c.manage_event(event);
// }
// }
/// Returns a reference to the characters of the scene.
pub fn characters(&self) -> &Vec<Character> {
&self.characters
}
/// Returns a reference to the map.
pub fn map(&self) -> &Map {
&self.map
}
}
/// Trait that needs to be implemented for everything that can be updatable.
pub trait Updatable {
/// Updates the thing depending on the duration since last frame.
fn update(&mut self, duration: &Duration);
// /// Called when an event arrives.
// fn manage_event(&mut self, event: &Event);
}

81
src/engine/vector.rs Normal file
View File

@ -0,0 +1,81 @@
//! A module for basic maths.
use std::ops::{Add, AddAssign, Mul, MulAssign, Sub, SubAssign};
/// A 2 dimensional vector.
#[derive(Copy, Clone)]
pub struct Vector {
/// The X coordinate.
pub x: f64,
/// The Y coordinate.
pub y: f64,
}
impl Vector {
/// Creates a new vector from its coordinates.
pub fn new(x: f64, y: f64) -> Vector {
Vector { x, y }
}
}
impl Add for Vector {
type Output = Vector;
fn add(self, rhs: Vector) -> Vector {
Vector {
x: self.x + rhs.x,
y: self.y + rhs.y,
}
}
}
impl AddAssign for Vector {
fn add_assign(&mut self, rhs: Vector) {
self.x += rhs.x;
self.y += rhs.y;
}
}
impl Sub for Vector {
type Output = Vector;
fn sub(self, rhs: Vector) -> Vector {
Vector {
x: self.x - rhs.x,
y: self.y - rhs.y,
}
}
}
impl SubAssign for Vector {
fn sub_assign(&mut self, rhs: Vector) {
self.x -= rhs.x;
self.y -= rhs.y;
}
}
impl Mul<f64> for Vector {
type Output = Vector;
fn mul(self, rhs: f64) -> Vector {
Vector {
x: self.x * rhs,
y: self.y * rhs,
}
}
}
impl MulAssign<f64> for Vector {
fn mul_assign(&mut self, rhs: f64) {
self.x *= rhs;
self.y *= rhs;
}
}
impl Mul<Vector> for f64 {
type Output = Vector;
fn mul(self, rhs: Vector) -> Vector {
Vector {
x: rhs.x * self,
y: rhs.y * self,
}
}
}

BIN
static/textures/rusty.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.0 KiB