diff --git a/Code/include/Skeleton/Skeleton.hpp b/Code/include/Skeleton/Skeleton.hpp index 18ef81c..d6978a7 100644 --- a/Code/include/Skeleton/Skeleton.hpp +++ b/Code/include/Skeleton/Skeleton.hpp @@ -14,6 +14,25 @@ /// \defgroup skeleton Skeleton module /// /// Module to manage 2D-skeletons +/// +/// This module contains two programs. +/// - Skeleton +/// - SkeletonDrawing +/// +/// \section Skeleton +/// This is the main binary. it takes several arguments +/// \verbatim +// Allowed options: +// -h [ --help ] produce help message +// --img1 arg first image (for the keypoints detection) +// --img2 arg second image (for the keypoints detection) +// --mask1 arg binary mask of the first image (to remove useless +// keypoints) +// --mask2 arg binary mask of the second image +// --skl1 arg first skeleton, and its branches +// --skl2 arg second skeleton +// -o [ --output ] arg output file +/// \endverbatim /////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////// diff --git a/report/subsections/junctions.tex b/report/subsections/junctions.tex index 846c1ab..0fd3638 100644 --- a/report/subsections/junctions.tex +++ b/report/subsections/junctions.tex @@ -45,11 +45,22 @@ X = \] Then subtract it with the centroid matrix associated. \[ - X - X_{m} + X_{c} = X - X_{m} \] -The normal vector of the best-fitting plane is the left singular vector corresponding to the least singular value of \[ XX^T \] +The normal vector $N$ of the best-fitting plane will be the cross product of the 2 eigenvectors $v_1,v_2$ corresponding to the two biggest singular values of the covariance matrix of $X_{c}$ : +\[ + X_{c}X_{c}^T + \] + \[ + N = v_1 \wedge v_2 + \] Then to compute the constant value of the equation we use the centroid. +\[ +d = -N*X_m +\] + +At the end we have the parameters of the plane in N and d. \begin{figure}[H] \begin{center}