doc/Rapports/conception.mdown

980 B

Conception

Intrinsic calibration

cf TP Simone Gasparini

Extrinsic calibration

cf TP Simone Gasparini

Skeletonization

  • Input : vector string
  • Ouptut : skeleton

Points of interest detection

  • Input : string : pictures ().jpg), (int : nb features?)

  • Output : keypoints vector ( std::vector)

  • function : we chose to use function SIFT (not SURF or Harris

  • tests :

    • with an image, verify the right number of points is detected

Matching points

  • Input : keypoints vectors, calibration
  • Output : keypoints vector
  • function :
  • tests :
    • use the function to match the points between a picture and herself
    • use the function with different soft toys on the first and second picture

Binary filter ?

  • Input : binary filter, matched points
  • Ouptut : filtered matched points
  • tests :

Camera filter

Skeleton division

  • Input :
  • Output :

Skeleton matching

  • Input :
  • Output :